Blogs

21
Apr 2022

Container Closure Integrity Testing using VeriPac 355 Technology

Container Closure Integrity Testing using VeriPac 355 Technology

Evaluating the ability of the container closure system to provide a sterile barrier and prevent leaks resulting from contamination is a crucial step towards maintaining the safety and suitability of primary packaging. United States Pharmacopeia (USP) and Food and Drug Administration (FDA), the driving forces behind container closure systems in the US, enforce strict regulations for Container Closure Integrity Testing (CCIT).

Traditionally, Dye Ingress and Microbial immersion were two popular methods to evaluate container closure integrity. However, they were probabilistic methods that lacked accuracy and provided subjective test results. In 2016, USP issued guidelines that they preferred deterministic test methods over probabilistic test methods. Examples of deterministic test methods include Vacuum Decay technology, Airborne Ultrasound technology, Helium Leak Detection etc. In this blog, we will discuss the role of VeriPac 355, which is a Vacuum Decay technology in testing container closure integrity.

CCI Testing Using VeriPac 355 Technology

The VeriPac 355 is a non-destructive technology based on the ASTM vacuum decay leak test method (F2338-09) and is recognized by the FDA as a consensus standard for package integrity testing. This micro leak detection system is applicable across a wide range of packaging formats and is specially designed to test containers for gas leaks for dry products (lyophilized vials, powder-filled) as well test for liquid leaks (non-protein based liquid-filled vials, prefilled syringes). The non-destructive nature of the technology allows it to be incorporated into protocols at any point in the handling process. VeriPac 355 technology's capability of detecting leak rates as low as 0.2 cc/min makes it an optimal quantitative test method for many pharmaceutical and food applications.

VeriPac 355 Working Principle

The VeriPac 355 leak tester is connected to a test chamber designed specially to hold the package being tested. Vacuum is then applied to the package inside the test chamber. Using a high-resolution absolute transducer technology, the test chamber is monitored for the level of vacuum as well as the change in vacuum over a predetermined test time. Although the test cycle takes only a few seconds, it produces accurate and non-subjective test results. The sensitivity of a test is a function of the sensitivity of the transducer, the package design, the package test fixture and critical test parameters of time and pressure. Test systems can be designed for manual or semi-automatic operation. This inspection method is suitable for laboratory offline testing and QA/QC statistical process control.

Inspection Criteria

  • Measures seal integrity of entire container or package
  • Tests for gas leaks for dry products (lyophilized vials, powder filled)
  • Tests for liquid leaks (liquid filled vials, prefilled syringes)

Benefits of VeriPac 355 Series

  • Non-destructive, non-subjective, no sample preparation
  • Deterministic, quantitative test method
  • Measures seal integrity of entire container or package
  • Tests for gas leaks for dry products (lyophilized vials, powder filled)
  • Tests for liquid leaks (liquid filled vials, prefilled syringes)
  • Measures and verifies container closure system integrity
  • Defect detection down to 0.2 ccm
  • High level of sensitivity, repeatability and accuracy
  • Short cycle time provides operator with PASS/FAIL result
  • Small footprint and modular portable design
  • ASTM test method and FDA standard
Readmore...
ccit, container closure integrity testing, veripac 355, cci technologies, package integrity testing
79
29
Mar 2022

E-Scan MicroCurrent Technology - Quality Assurance Solution for Parenteral Product Packaging

E-Scan MicroCurrent Technology - Quality Assurance Solution for Parenteral Product Packaging

As technological advancements lead to an ever-increasing world of routes of administration for new and existing drugs, packaging decisions for such options have become more challenging. There are multiple options for drug delivery container formats, and each should be continuously reviewed with reference to compliance and accuracy of delivery. Packaging is a critical point of concern whenever a new drug product is introduced into the market. When it comes to parenterals, there has been a dramatic increase in these packaging formats over the past 10 years. Apart from typical formats of vial and syringes, dual-chamber devices, cartridges and electronically enabled devices have been introduced, all which demand high levels of packaging accuracy. So how do we ensure the ability of the packages to maintain sterility of the drug? Quality assurance with the proper Container Closure Integrity Test (CCIT) method is critical.

CCI Testing using E-Scan 655 MicroCurrent HVLD

The E-Scan 655 technology utilizes the MicroCurrent conductivity test method to non-destructive evaluate container closure integrity. MicroCurrent technology exposes the package and product to lower voltage than other conductivity based solutions. This unique technology requires no sample preparation and is a non-contact and non-invasive test method. What makes E-Scan 655 technology unique is its ability to test a wide range of liquid-based products including low conductivity sterile water for injection (WFI) and proteinaceous products with suspensions. The system also features a fast test cycle and is simple to operate. Additional benefits include quick product changeover and an easy recipe set up to accommodate a wide range of products and applications. The offline E-Scan 655 method can be migrated from the laboratory to automated 100% inline testing applications at high production speeds.

Testing Procedure

Using a set of electrode probes, E-Scan system tests a non-conductive container that is sealed. The container material can vary from glass, plastic, or poly laminate. The container or package must contain liquid (minimum fill 30%). In case of any defect including pinhole or crack, there will be a resistance differential and change in current flow indicating a breach in the container. The approximate defect location can be identified.

Benefits of MicroCurrent HVLD technology:

  • Non-destructive, non-invasive, no sample preparation
  • High level of repeatability and accuracy
  • Effective across all parenteral products, including extremely low conductivity liquids (WFI)
  • Lower voltage exposure produces no ozone, eliminating risk to the product and environment
  • Listed in USP Chapter <1207> as recommended method for parenteral liquid package integrity testing
  • Robust method and approximate 3x Signal-Noise-Ratio for a wide range of product classes and package formats
  • Simplifies the inspection and validation process
Readmore...
E-Scan, microCurrent hvld, parenteral product packaging, ccit, container closure integrity
107
22
Mar 2022

Flexible Package Integrity Testing Techniques Offered by PTI

Flexible Package Integrity Testing Techniques Offered by PTI

Testing the integrity of newly developed packaging is a critical step in ensuring that it serves its requirements in every situation. Packaging needs to ensure that it sustains physical and mechanical stress and keeps the contents fresh until they reach the end user. In order to understand how packaging behaves under different circumstances, flexible packaging testing is quite important. Procedures for testing flexible packs are quite different from rigid packaging. Compared to rigid packaging, flexible packaging can present unique challenges in how to test both the integrity of the package and the seal quality. Some of the solutions offered for flexible package testing by PTI.

Flexible package integrity testing techniques

1. VeriPac Flex System

PTI's VeriPac FLEX systems are versatile non-destructive CCIT methods, designed specifically for pouches and other flexible packaging with dry-filled products. The technology utilizes an ASTM method for vacuum decay leak testing (F2338) listed in ISO 11607 and recognized by the FDA as a consensus standard for package integrity testing. PTI's VeriPac FLEX Systems are available in several configurators that can accommodate various package specifications and test sensitivity requirements. Such configurators for both the leak test instrument and the test chamber capacity enable evaluation of small format sachets and stick packs, up to large bulk size pouches and bags. A unique feature of this technology is that it requires no changeover of settings or tooling and is proven to provide high levels of sensitivity, reliability and practicality in testing a complete range of flexible packaging formats and sizes.

Technology Overview

The test begins by connecting the VeriPac tester to the appropriate FLEX chamber based on the size range of the package. The two VeriPac systems paired with the FLEX chamber provide different leak detection capabilities depending on the application. While the integrated flexible test chamber (IFC) is intended for sachets or stick packs with low headspace, the Drawer Style test chamber (D-Series) is ideal for package formats and bulk products. The unique difference with VeriPac FLEX systems is how the package is tested. PTI utilizes its flexible membrane that conforms to the package shape and size, eliminating any stress and damage to the film materials. Multiple packages can be tested in a single test cycle.

Benefits of VeriPac Flex System

  • Non-destructive, non-subjective, no sample preparation.
  • Deterministic, quantitative test method.
  • Test multiple packages in a single test cycle.
  • Cost effective with rapid return on investment.
  • Supports sustainable packaging and zero waste initiatives.
  • Simplifies the inspection and validation process.
  • Accurate and repeatable results.
  • ASTM test method and FDA standard.
  • USP < 1207> compliant

2. Airborne Ultrasound Technology

PTI's Airborne Ultrasound technology is a non-destructive and non-invasive seal quality inspection method. The test is conducted by allowing ultrasound waves to pass through the package seal causing the reflection of sound waves. To identify the defects, variations in the reflected signals’ strength are analyzed. PTI offers two configurations of Airborne Ultrasound testing technology; Seal-Scan® and Seal-Sensor.

Seal-Sensor™ is a deterministic, quantitative method that inspects the final pouch seal non-destructively 100% online. Seal-Sensor detects incomplete seals, partial or weak areas in seals, and many common defects in seals that appear visually acceptable yet possess defects that affect product quality, value and shelf-life.

Seal-Scan® is an Airborne Ultrasonic Technology (ABUS) that inspects and analyzes pouch seals non-destructively offline for in-depth seal quality evaluation and analysis. Seal-Scan® is a semi-automatic inspection system with x-y drive, used for the detection of seal defects, seal characterization and material analysis.

Advantages of PTI’s Seal Scan and Seal Sensor Method:

  • Deterministic seal quality inspection method that produces quantitative results.
  • This method works for any material type and combinations regardless of color, transparency, print, surface finish or porosity.
  • Non-destructive and non-subjective test method that requires no sample preparation.
  • Technology can be integrated for 100% online defect detection of the final pouch seal.
  • Repeatable, reproducible and reliable results for seal quality inspection.
  • Cost-effective solution for seal integrity testing and seal analysis that characterizes overall quality and uniformity of the seal.
Readmore...
flexible packaging, ccit, seal integrity testing, package integrity testing, veripac flex system, seal scan, seal sensor
131
03
Mar 2022

VeriPac Test Systems for Powdered Dairy Products Package Testing

VeriPac Test Systems for Powdered Dairy Products Package Testing

Most powder dairy products (milk powders, infant formula, protein-based powders, etc.) require process monitoring, production control and modified atmosphere packaging (MAP) to retain their quality throughout its shelf-life or until it reaches the end-user. However, products that use MAP often have high risks of deficiencies in package quality control. Most MAP applications use Nitrogen flushing, and testing package quality involves sampling package gas content days after the product has been packaged. The protein based content of many products will allow bacteria to consume the majority of the O2 content before the increase in O2 is detected by gas testing equipment. Leaks as small as 10-20 microns will only increase the oxygen content to levels below 3%, the typical pass/fail threshold, passing defective product. Although packaging integrity testing can be conducted using traditional methods like water bath, they are only sensitive to 25-micron leaks at best. Therefore, dairy product manufacturers should use testing methods that offer highly sensitive leak testing along with the highest level of quality assurance.

Package Testing using VeriPac Test System

Vacuum Decay has been verified as the most practical and sensitive vacuum based leak test method. It is capable of creating reliable and accurate quantitative results and a pass or fail determination. The standard Vacuum Decay leak test method (ASTM F2338), developed using PTI's VeriPac instruments, is recognized by the Food and Drug Administration (FDA) as a consensus standard for container closure integrity (CCI) testing. The test method is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207). VeriPac series are a practical alternative to destructive testing methods that provide subjective test results and variable test standards.

PTI brings a tradition of excellence and performance reliability to our line of VeriPac non-destructive package testing equipment. PTI's VeriPac Series has the capability to non-destructively test packages at the production line with high levels of accuracy and sensitivity. Non-destructive testing not only reduces wastage, but it also allows operators to have a greater understanding of package quality. Moreover, it can accommodate multiple package formats and requires non changeover when testing different size packages.

Technology Overview

Under this technique, the VeriPac leak tester is connected to a test chamber that contains sample packages. Vacuum is applied to these packages and a dual transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. The test cycle takes only a few seconds, results are non-subjective, and testing is non-destructive to both product and package.

VeriPac Inspection system:

  • Non-destructive, non-subjective, no sample preparation.
  • Deterministic, quantitative test method.
  • Defect detection down to 0.2 ccm.
  • High level of sensitivity, repeatability and accuracy.
  • Short cycle time provides operator with PASS/FAIL result.
  • Small footprint and modular portable design.
  • ASTM test method and FDA standard.
  • Referenced in USP 1207 guidance.
Readmore...
package integrity testing, container closure integrity testing, ccit, dairy product package testing, veripac test systems
180
28
Feb 2022

Package Integrity Testing using VeriPac 310 Series

Package-Integrity-Testing-using-VeriPac 310

Finding the appropriate packaging for perishable foods can be quite challenging for manufacturers. Apart from considering factors such as vulnerability and freshness, a food package must ensure safety throughout its shelf life or until it reaches the end-user. To ensure that the contents are not exposed to any foreign contamination, manufacturers should conduct regular tests that can evaluate the ability of the packaging in maintaining seal integrity. Package integrity testing can pinpoint the exact location of leaks which helps operators identify the problematic area and make necessary adjustments. As a result, manufacturers can be sure of the packaging quality and ensure that the customers enjoy their products in the freshest possible state.

For inspecting package integrity of food products, PTI has developed VeriPac 310 series, a non-destructive, non-invasive Container Closure Integrity Testing (CCIT) system for highly effective leak detection. It is an ASTM approved patented vacuum decay leak test method F2338-09 recognized by the FDA as a consensus standard for package integrity testing. The VeriPac 310 provides quantitative measurements for identifying package defects before critical process issues get out of control. The tests can be performed in any sequence with real-time results.

VeriPac 310 series was developed using VeriPac leak test instruments. The next generation of VeriPac systems combines both technological innovation and practical adjustments to current technology to make it the most sensitive and versatile vacuum-based leak detection technology to date. Through the introduction of unique test cycles, pneumatic controls and processing algorithms, the VeriPac technology is establishing itself as the foremost vacuum-based leak detection technology. VeriPac systems reduce waste and provide operators with a clear understanding of package quality.

Technology Overview

Under this method, VeriPac leak testers are connected to the test chamber designed to hold the sample packages. Vacuum is then applied to the package being tested. The absolute transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. VeriPac 310 test systems are suitable for manual or automatic operation and are designed for laboratory offline testing and production applications for QA/QC statistical process control. Testing is more reliable, sensitive and efficient than destructive methods such as the water bath or burst test.

Benefits of VeriPac 310 Series

  • Non-destructive, non-subjective, no sample preparation
  • Deterministic, quantitative test method
  • Repeatable, rapid and reliable testing
  • Cost effective and economical
  • Simplifies the inspection and validation process
  • ASTM test method and FDA standard
Readmore...
package integrity testing, container closure integrity testing, ccit, veripac 310 series, CCI
180
15
Feb 2022

How to Ensure Package Integrity of Medical Devices

How to Ensure Package Integrity of Medical Devices

Medical devices play a key role in the diagnosis and treatment of many conditions and life saving treatments. To insure patient safety, the effectiveness of such medical devices should be carefully evaluated. Package integrity testing of medical devices is a crucial part of the manufacturing process.

Medical device package testing methods offered by PTI

1. Airborne Ultrasound technology

PTI’s Airborne Ultrasound technology (ABUS) is a seal quality inspection test method, capable of non-destructively examining packaging seal quality for defects, primarily flexible packaging seals. Under this method, ultrasound waves are passed through the pouch seal, creating a reflection of sound waves. The signal strength variations are analyzed to identify the presence of seal defects. Airborne Ultrasound technology creates a quick analysis of the seal area without tampering with the packaging to identify many common seal defects, such as incomplete or missing seals, wrinkles, and channel defects. The technology is in high demand due to its applicability across several industries, specifically the medical device industry. “Ultrasound is the only technology capable of identifying what the quality of that physical bonded nature of the seal materials are,” comments Tyler Harris, applications engineer at PTI- Packaging Technologies & Inspection. Medical device packaging including TYVEK® pouches is a very common application for ABUS technology.

PTI's Seal Scan (Offline) and Seal-Sensor (Inline) technology have further redefined pouch seal integrity testing. Both these technologies utilize non-contact airborne ultrasonic testing technology. With these advancements, Airborne Ultrasound technology has positioned itself to be the most sensitive method for non-destructive seal quality testing, in both the laboratory and in automated 100% inline testing production lines. ABUS is an ASTM Test Method F3004, recognized by the FDA as a standard for seal quality inspection and also referenced in the USP 1207 chapter guidelines.

2. Vacuum Decay technology

For several decades, Vacuum Decay has been proven to be the most practical and sensitive leak detection method for medical device and pharmaceutical packaging. It is a Container Closure Integrity Test (CCIT) capable of evaluating a wide range of packaging formats including filled and sealed rigid, semi-rigid and flexible packaging made of non-porous or porous materials. Vacuum Decay, being a non-destructive test method, does not cause any damage to the package being tested. This reduces significant waste and allows operators to have a thorough understanding of package integrity and package quality.

PTI’s VeriPac inspection technique is an ASTM approved (F2338), FDA recognized testing method capable of evaluating a wide range of high-risk package applications. To conduct this test, packages are first placed in a well-fitted evacuation test chamber, which has an internal or external vacuum source. The test operator continuously monitors the vacuum levels to identify variations from a pre-determined targeted vacuum level. In the presence of a defect, air escapes from the package into the test chamber. Packages without any defect retain the air, maintaining a constant chamber vacuum level. It is an ideal solution for medical device manufacturers to assure that the product meets regulatory standards. Based on the packaging materials used and the level of test sensitivity required, manufacturers can select the appropriate VeriPac model.

Readmore...
ccit, vacuum decay, airborne ultrasound, package integrity testing, medical device package testing
210
08
Feb 2022

Snack Food Package Integrity Testing offered by PTI

Snack Food Package Integrity Testing offered by PTI

Ensuring the integrity of product packages is of utmost priority to snack food manufacturers. On-the-go snack products like wafers, chips, jerky,and coffee are vulnerable to deterioration by organic components such as moisture or air. Such foreign contaminants can enter the product through defective packages and accelerate the food decomposition process. In fact, mold, oxidation, flavor degradation, and spoilage are often the direct result of compromised package integrity. These factors can create a negative impact on consumers’ perceptions of a product and brand.

It is vital for manufacturers to ensure that packaged products are properly tested for integrity to insure that products remain fresh until they reach the consumer. Today, the market offers a wide range of leak testing that is both destructive and non-destructive. However, manufacturers should realize that a method applicable for one is not ideal for another. The leak testing method chosen should be based on the specific package specification and defect rate detection. Read on to know in detail about snack food packaging integrity testing method offered by PTI.

Package testing using PTI VeriPac Vacuum Decay Series

PTI's VeriPac inspection systems are ASTM approved vacuum decay leak test method (F2338) recognized by the FDA as a consensus standard for package integrity testing. This test method was developed using VeriPac leak test instruments. Vacuum Decay technology is a container closure integrity test (CCIT) method, referenced in the new USP <1207> Chapter Guidance as a deterministic test method for package integrity testing. This method is also listed in ISO 11607.

VerIPac test systems have a proven capability to non-destructively test a wide range of packaging formats without requiring any changeover when testing different size packages. Additionally, it is also possible to test multiple packages in a single test cycle. VeriPac provides a qualitative result (PASS or FAIL) as well as quantitative data that correlates to leak rate and leak size. Being a non-destructive method, the test allows non-defected packages to be returned to the production line, thereby reducing waste and improving testing capabilities. This makes it a practical alternative to destructive testing methods like water bath and dye ingress.

Technology Overview

The process begins by connecting VeriPac leak testers to a test chamber specifically designed to hold the sample package. Vacuum is applied to the package being tested. Using a single or dual vacuum transducer technology, vacuum levels, as well as changes in vacuum over a predetermined test time, are monitored. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. VeriPac test systems are suitable for laboratory offline testing and can be designed for manual or fully automated operation. The test cycle takes only a few seconds, is non subjective, and non-destructive to both product and package.

VeriPac Inspection system:

  • Non-destructive test method that ensures quantitative test results
  • FDA recognized ASTM test method
  • Referenced in USP 1207 guideline
  • Cost-effective with rapid return on investment
  • Supports zero waste initiatives
Readmore...
flexible packaging, container closure integrity testing, package integrity testing, ccit
180
25
Jan 2022

How to Leak Test High Risk Medical Device Packages

How to Leak Test High Risk Medical Device Packages

Medical devices are available in a variety of forms with complex geometric attributes such as valves, tubes and others that can complicate the medical device testing process. Hence, medical device leak testing equipments are expected to provide high levels of sealing effectiveness and test result sensitivity to narrow down the complexities.

Medical Device Package testing using Seal Scan technology

Seal-Scan® is a deterministic, quantitative, high-resolution method based on is an Airborne Ultrasonic Technology (ABUS). It is highly effective in non-destructively inspecting and analyzing pouch seals for defects and seal integrity for consistency. Seal-Scan systems utilize the ASTM Test Method F3004-13, which is a non-destructive test method for evaluating seal quality and integrity using Airborne Ultrasound technology. The test procedure is simple, quick and requires no sample preparation. Additionally, Seal-Scan® provides advanced digital imaging software tools for process control which offers in-depth seal quality analysis.

Seal-Scan features two scan modes:

  • Linear Scan (L-Scan) to simulate online defect detection (line graph)
  • C-Scan for detailed seal analysis, producing pixel by pixel evaluation of seal (Opto-Acoustic image)

Technology Overview

The test beings by scanning the pouch seal or package material between two focused ultrasonic sensors. Ultrasonic waves propagate through single or multiple layers of bonded materials. As the ultrasonic waves propagate through different mediums, it causes reflections of sound waves, which reduces/eliminates signal strength. The level of signal passing through the seal is a function of the quality of the seal. Various types of defects; leaking and non-leaking, process-related and random are detectable.

Seal scan has two scan modes (L-Scan and C-Scan) that is capable of producing Opto-Acoustic images as well as detailed statistical analysis. An L-Scan is a single linear scan along the X-axis of the seal that provides a line graph of seal integrity and simulates online inspection. C-Scan produces multiple scans (along X and Y-axis of seal area) that provide a high-resolution ultrasonic image of the seal structure. This technology can be integrated into a pouch production line via the Seal-Sensor for 100% fully automated on-line seal defect detection.

Benefits of Seal Scan Technology

  • Deterministic inspection method producing quantitative results.
  • Works for any material and combinations, regardless of color, transparency, print, surface finish and porosity.
  • Produces high resolution Opto-Acoustic image of seal.
  • Characterizes overall quality and uniformity of the seal.
  • ASTM Test Method F3004 and FDA recognized standard for seal quality inspection.
Readmore...
container closure integrity testing, package integrity testing, ccit, airborne ultrasound technology, seal scan
225
20
Jan 2022

Package Integrity Testing Using VeriPac Series

Package Integrity Testing Using VeriPac Series

Medical devices and pharmaceuticals products are manufactured with zero tolerance to defects. For this reason, manufacturers give top priority to quality control procedures and regulatory standards. This is to make sure that products maintain the quality standards required for their intended use.

Packaging plays an important role in maintaining product quality and ensuring the product reaches consumers defect-free. While selecting the right packaging material is important, testing integrity of packages also holds high relevance. Traditionally, destructive testing methods like Dye Ingress and Water Bath were popular Container Closure Integrity Testing (CCIT) techniques. However, in recent years, the industry has moved towards deterministic methods to achieve more precise, reliable results.

How PTI's VeriPac Series ensure package integrity?

PTI 's VeriPac series are non-destructive, non-subjective test systems ideal for leak testing high-risk applications that require extreme levels of test reliability and accuracy. This technology uses an ASTM approved vacuum decay leak test method F2338, which is listed in ISO 11607, USP <1207>. It is an FDA recognized consensus standard for package integrity testing. Using cutting-edge innovation, VeriPac inspection systems provide repeatable, sensitive, and more robust detection of defects. VeriPac testers feature the patented PERMA-Vac manifold system and dynamic test modes that provide the ability to test a wide range of package formats including flexible, rigid and semi-rigid packaging. Apart from package integrity testing, VeriPac technology can also be used for stability studies, clinical trials, quality assurance testing and statistical process control (SPC).

Technology Overview

The test method is initiated by connecting VeriPac leak testers to a test chamber that is specially designed to contain the package being tested. The package is placed inside the test chamber to which a vacuum is applied. Using a single or dual vacuum transducer technology, the level of vacuum as well as the change in vacuum over a predetermined test time are monitored. The variations in absolute and differential vacuum indicate the presence of leaks and defects within the package. The sensitivity of a test is a function of the package design, the package test fixture and critical test parameters of time and pressure. Test systems can be designed for manual or automatic operation. This inspection method is suitable for laboratory offline testing and production applications for QA/QC statistical process control. The test cycle takes only a few seconds, is non-invasive and non-destructive to both product and package.

Benefits of VeriPac series

  • Deterministic, quantitative test method.
  • Defect detection down to 0.034 cc/min.
  • Highest level of repeatability and accuracy.
  • Cost-effective with rapid return on investment.
  • Simplifies the inspection and validation process
  • Results proven superior to dye ingress.
  • ASTM test method and FDA standard
  • USP <1207> Compliant.
Readmore...
container closure integrity testing, package integrity testing, ccit, vacuum decay technology, veripac
201
18
Jan 2022

Evaluating Quality Control Solutions for Parenteral Products

Evaluating Quality Control Solutions for Parenteral Products

Parenteral preparations are defined as solutions, suspensions, emulsions for injection or infusion, powders for injection or infusion, gels for injection and implants. They are sterile products intended to be administrated directly into human bodies. Parenteral drug products are expected to be free from microorganisms, pyrogenic substances as well as other visible particles. Contaminated parenteral drug products can cause serious health concerns to the patient. Hence, sterility assurance and package integrity testing are of paramount importance in parenteral drug manufacturing. Read on to know more about parenteral products package testing methods offered by PTI.

Parenteral products package testing methods:

1. Vacuum Decay technology

Vacuum Decay technology is a non-destructive Container Closure Integrity test method primarily used to detect leaks in package seals. Proven to be the most practical and sensitive vacuum-based leak test method, Vacuum Decay technology is capable of identifying leaks in sealed rigid, semi-rigid and flexible packaging made of non-porous or porous materials. It provides reliable, accurate and repeatable test results that ensure deterministic package testing and leak detection. Vacuum Decay technology has established itself as a non-destructive alternative to traditional test methods like Water Bath and Dye Ingress, making it a practical solution for leak detection in the Pharmaceutical and Medical Device industry.

How does Vacuum Decay technology work?

The principle behind Vacuum Decay technology is simple and it challenges container integrity based on fundamental physical properties. The test begins by placing sample packages in a closely fitting evacuation test chamber, which is equipped with an external vacuum source. Based on the test sample and level of sensitivity required, a pre-determined vacuum level is chosen for the test. The next step involves evaluating the test chamber and test system dead space for a pre-determined period. Differential pressure transducers are used to monitor changes in vacuum levels for a specified period. A pressure increase beyond the predetermined pass/fail limit indicates container leakage.

Benefits of Vacuum Decay technology

  • Non-destructive package inspection system
  • Accurate and reliable results
  • Definite pass/fail result based on quantitative test data 
  • Accommodates multiple packaging formats
  • Eliminates destructive, subjective testing methods
  • Effective in detecting even minute leaks
  • ASTM Test Method F2338, FDA Consensus Standard and USP 1207 compliant
  •  

2. MicroCurrent HVLD Technology

PTI’s Microcurrent is patent-pending unique CCI technology that has revolutionized the conventional high voltage leak detection method. It is a non-invasive and deterministic container closure integrity testing method that is effective across all parenteral and biologic products including low conductivity liquids such as sterile water for injection. The Microcurrent HVLD test method is highly effective in detecting the presence and location of pinholes, micro-cracks, stopper/plunger leaks, non-visible leaks under crimping and many other defects across applications like pre-filled syringes, vials, cartridges, ampoules, BFS, bottles and pouches. A unique mode of Microcurrent HVLD uses about 50% less voltage and reduces the exposure of product and environment to less than 5% of the voltage when compared to conventional HVLD solutions. The E-scan HVLD series is a leading solution of sturdy container closure integrity test equipment.

Benefits of MicroCurrent HVLD technology

  • Non-destructive & requires no sample preparation
  • Deterministic & non-invasive
  • Highly effective across all parenteral products
  • High levels of sensitivity, accuracy and reliability in results
  • Offline and 100% online inspection at high production speeds
  • Simplifies the inspection and validation process
  • Referenced in Chapter USP 1207 Guidance for CCIT
Readmore...
parenteral product leak testing, container closure integrity testing methods, ccit, hvld, vacuum decay technology, package integrity testing
198
21
Dec 2021

Why Manufacturers Rely on High Voltage Leak Detection Technology to Ensure Pharmaceutical Package Integrity

Why Manufacturers Rely on High Voltage Leak Detection Technology to Ensure Pharmaceutical Package Integrity

Packaging is an essential part of the pharmaceutical industry, given the sensitive nature of the contents. High-risk medications and lifesaving drugs need utmost care and protection until they reach the patient. As such, stringent industry standards apply to pharmaceutical packaging. Manufacturers give high priority to safety and quality while selecting packaging materials for a drug or healthcare product. The packaging should be able to act as a barrier against external contamination and chemical reactions. Exposure to reactive gases can alter the physical, chemical and biological attributes of the products. This makes Container Closure Integrity Testing of pharmaceutical packaging a regulatory requirement.

Role of MicroCurrent HVLD in ensuring pharmaceutical package integrity

Often referred to as the conductivity and capacitance test, High Voltage Leak Detection (HVLD) is a test method found to be highly effective in detecting the presence and location of leaks in a wide range of pharmaceutical and parenteral applications. It can be used for leak testing in nonporous, rigid or flexible packages, as well as packages containing liquid or semi-liquid products. High Voltage Leak Detection test is conducted using electrical conductivity and resistance principle. This method operates by passing high voltage micro current signals through sample packages. Under the presence of a leak, the electrical resistance of the sample declines, causing an increase in current. Compared to other leak detection methods that rely on flow of gas or liquid, HVLD technology relies on “flow” of current. This reduces challenges with defect clogging compared to flow-based analysis.

The latest evolution of HVLD, PTI’s patent pending MicroCurrent technology, aims to achieve a high level of CCI assurance across the entire range of pharmaceutical products. The MicroCurrent HVLD reduces voltage exposure to the product to less than 5% of the voltage exposure experienced when testing with comparable HVLD solutions. Reducing exposure voltage not only reduces any risk that the voltage poses to the product, but also greatly reduces the production of Ozone during operation when compared with traditional HVLD solutions. Ozone in the headspace of a container can be detrimental to the product, and in the operating environment can affect respiratory health.

Benefits:

  • Non-destructive Container Closure Integrity Test (CCIT)
  • Requires no sample preparation
  • Capability to test multiple packages in a single test cycle
  • Identifies which package is defective
  • Simplifies the inspection and validation process
  • Supports sustainable packaging initiatives
  • ASTM test method and FDA standard
  • Cost effective with rapid return on investment
  • Readmore...
    hvld, package integrity testing, ccit, container closure integrity, microcurrent hvld
    185
    16
    Dec 2021

    How Automated CCI Testing Ensures Integrity and Quality of Pharmaceutical Packages and Containers?

    How Automated CCI Testing Ensures Integrity and Quality of Pharmaceutical Packages and Containers

    Maintaining quality requirements and ensuring package integrity are important criteria for pharmaceutical product manufacturers. As such, the shift to more automated processes and digital measurement systems have systematically become a greater part of pharmaceutical manufacturing. In this blog, we will discuss automated package inspection techniques offered by PTI.

    1. Vacuum Decay technology

    Vacuum Decay technology is a non-destructive Container Closure Integrity Test (CCIT) used for leak detection in nonporous, rigid, or flexible packages. It is an ASTM-approved, FDA-recognized test method with proven capabilities to provide reliable, reproducible, repeatable and accurate quantitative results. This method involves drawing vacuum on the sample package kept in the test chamber and analyzing the vacuum level for any defect, indicating a leak.

    Vacuum Decay technology is applicable across a wide range of pharmaceutical and medical devices with the capability of detecting leaks in single digit micron range while accommodating multiple packaging types. PTI has made further advancements in Vacuum Decay technology with its PERMA-VAC technology and VeriPac FLEX Series.

    PERMA-VAC technology that addresses vacuum decay detection at the very core of physical test measurement, controlling the test system volume and maximizing the SNR between good and defective samples. It is a a single or dual vacuum transducer technology, which has higher test sensitivity for providing accurate and reliable results.

    The VeriPac FLEX series, designed specifically for dry filled pouches and flexible packaging are available in several configurations with the ability to accommodate various package specifications. Each model achieves a specific range of test sensitivity and various test chamber sizes are available depending upon the package size and characteristics. The VeriPac FLEX series offer defect detection to the 10 to 20 micron range.

    2. MicroCurrent HVLD Technology

    PTI's MicroCurrent HVLD technology is a unique High Voltage Leak Detection Technology for container closure integrity testing. It is found to be highly effective across a wide range of high-risk pharmaceutical products and medical devices. When compared to traditional HVLD solutions, this method uses around 50% less voltage and exposes the product and environment to less than 5% of the voltage. Being a non-invasive technique it requires no sample preparation and has a high degree of reproducibility and accuracy throughout.

    The Microcurrent HVLD test method can detect the presence and location of pinholes, micro-cracks, stopper/plunger leaks, non-visible leaks under crimping and many other defects. It assures product CCI by scanning a non-conductive sealed container with electrode probes. Any defect in the packaging results in resistance differential and change in current flow in the container as well as the approximate defect location.

    Such automated platforms would provide the same 100% testing capability with an accurate inspection that includes quantitative test data and a pass/fail result. Proper sensory measurement requires time to capture a result. However, these new automated technologies can still reliably inspect containers at a much higher rate than was possible before, with a more sensitive leak detection capability.

    Readmore...
    CCIT, container closure integrity testing, package integrity testing, vacuum decay technology, HVLD technology
    197
    14
    Dec 2021

    Testing Integrity of Low Headspace Packages with VeriPac 410 Series

    Testing Integrity of Low Headspace Packages with VeriPac 410 Series

    According to USP1207, the headspace inside a sterile pharmaceutical or medical device packaging is an important part of a product. Therefore, it should comply with corresponding quality-relevant attributes. The attributes may vary depending on the product. For instance, the residual oxygen concentration is one of the attributes for oxygen-sensitive formulations. Testing low headspace packages like sachets and blister packages can be quite challenging for manufacturers. Read on to know how PTI's VeriPac 410 ensures package integrity of low headspace packages.

    Leak testing using VeriPac 410 series.

    Over the years, manufacturers of multi-cavity blister packs and low headspace packaging have been using destructive test methods to evaluate the integrity of such packages. However, such traditional test methods lacked accuracy and produced subjective, and unreliable results. In order to overcome the limitations of destructive test methods, PTI has developed VeriPac 410 inspection system - a non-destructive seal and leak detection technology for blister packs, sachets, and pouches with low headspace.

    The VeriPac 410 employs a mix of vacuum decay technology and differential force measurement to identify defects in packages. Multiple packages can be tested in a single test cycle, depending on package specifications. The non-deterministic nature of the test produces accurate and reliable results, removes subjectivity and the operators can get a definite pass/fail outcome. Additionally, being a non-destructive test method, the VeriPac 410 allows tested packages to be returned to the production line and eliminates the cost and waste associated with destructive leak test methods. This test method has a wide range of applications including low volume flexible and semi-flexible package leak testing.

    Technology Overview

    The VeriPac 410 tester is connected to a specially designed drawer-style test chamber. A custom package insert that conforms to the package shape increases test sensitivity. Certain types of packages can be tested in multiple during a single test cycle. The location of the defective package or cavity is identified. Vacuum levels are monitored during the test cycle to evaluate the package using the ASTM F2338 vacuum decay leak test method. Decay of the vacuum level indicates that air is leaking from the package into the test chamber.

    Once the vacuum testing phase is complete, a pressure plate maps the surface pressure of the flexible package lidding. The pressure plate system recognizes the pressure pattern exerted by the package when it is not defective, and the lack of pressure exerted on the pressure plate by a defect, allowing for both defect detection and location of the defective package or cavity.

    Benefits of VeriPac 410 system

  • Non-destructive, non-invasive, no sample preparation
  • Non-subjective, accurate and repeatable results
  • Capability to test multiple packages in a single test cycle
  • Identifies which package is defective
  • Simplifies the inspection and validation process
  • Supports sustainable packaging initiatives
  • ASTM test method and FDA standard
  • Cost effective with rapid return on investment
  • Readmore...
    CCIT, container closure integrity testing, package integrity testing, veripac 410
    200
    25
    Nov 2021

    Container Closure Integrity Techniques for Pharmaceutical Package Integrity

    Container Closure Integrity Techniques for Pharmaceutical Package Integrity

    Packaging has always been an indispensable factor in the pharmaceutical manufacturing process. Since most pharmaceutical products come under high-risk category, appropriate packaging is vital to prevent product deterioration. Faulty or damaged packaging can cause oxygen, moisture, microorganisms or other harmful substances to enter the product- making it unfit for use. Given the sensitive nature of pharmaceutical products, package inspection testing holds high relevance. Let us now understand what CCI techniques are being offered by PTI for pharmaceutical package testing.

    Techniques to ensure CCI

    1. Vacuum Decay technology

    Vacuum Decay is a non-destructive Container Closure Integrity Test (CCIT) method that is highly effective in detecting leaks in nonporous, rigid and flexible packages. It is a simple test method that challenges container integrity based on fundamental physical properties. As the name suggests, this test is conducted by drawing vacuum on a package within a test chamber and monitoring the vacuum level for any decay, which would indicate a leak. The standard vacuum decay leak test method (ASTM F2338), developed using PTI's VeriPac instruments, is recognized by the FDA as a consensus standard for container closure integrity (CCI) testing. The test method is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207). PTI has revolutionized Vacuum Decay technology with its s next generation of improvements in the form of PERMA-VAC technology and VeriPac FLEX Series.

    PERMA-VAC Technology is a single or dual vacuum transducer technology, which has higher test sensitivity for providing accurate and reliable results. This method can be applied to flexible and semi-flexible packages alike.

    The VeriPac FLEX series are innovative packaging inspection systems specifically for flexible packages. These are available in different configurations to accommodate various package specifications, capable of detecting leaks down to the 10 to 20 micron range.

    Benefits of Vacuum Decay technology

  • Non-destructive, non-subjective, no sample preparation
  • Capable of detecting defects down to 0.05 ccm
  • Accurate, reliable, repeatable results
  • Supports sustainable packaging and zero waste initiatives
  • ASTM test method F2338
  • 2. MicroCurrent HVLD Technology

    High Voltage Leak Detection (HDLV) is a Container Closure Integrity test method that utilizes high voltage leak detector system for evaluating integrity of nonporous packages. The latest evolution in the HVLD technology, PTI’s MicroCurrent HVLD is revolutionary technology, a non-destructive, non-invasive CCI technique which can precisely detect any leak in a wide range of liquid filled products including extremely low conductivity sterile water for injection (WFI) and proteinaceous products with suspensions.

    This method operates by scanning a sealed container using electrode probes to detect the presence of any leak. By analyzing a change in the current flow, the test operator can detect Defect in the container as well as its approximate location. PTI's MicroCurrent HVLD uses about 50% less voltage and exposes the product and environment to less than 5% of the voltage compared to conventional HVLD technologies. This technology can be easily shifted from offline to 100% inline testing application, thereby simplifying the inspection and validation process.

    Benefits of MicroCurrent HVLD technology

    • Non-destructive, non-invasive, no sample preparation
    • High level of repeatability and accuracy
    • Effective across all parenteral products, including extremely low conductivity liquids (WFI)
    • Low voltage exposure to the product and environment
    • Listed in USP Chapter <1207> as recommended method for parenteral liquid package inspection
    • Robust method and approximate 3x Signal-Noise-Ratio for a wide range of product classes and package formats
    • Simplifies the inspection and validation process
    • Offline and 100% online inspection at high production speeds
    Readmore...
    ccit, package integrity testing, vacuum decay technology, microcurrent hvld technology, airborne ultrasound technology
    210
    23
    Nov 2021

    Ensure Integrity of Flexible Packages with PTI's VeriPac Flex Series

    Ensure Integrity of Flexible Packages with PTI's VeriPac Flex Series

    Package integrity is of paramount importance in ensuring that sterility is maintained over a product’s entire shelf life. It is also a critical factor in preventing penetration of microorganisms throughout the distribution process. International Organization for Standardization defines package integrity as "the unimpaired physical condition of the final package."

    Flexible pouches are extensively being used in the pharmaceutical and food industry as a primary packaging component. Even a minute breach in the sterile condition of the product is often considered a serious risk, resulting in the disposal of valuable products. Therefore, manufacturers give utmost importance for package integrity testing. Today, the market offers a host of techniques that can evaluate packages both destructively and non-destructively. In this blog we will discuss how VeriPac Flex system effectively evaluates integrity of a wide range of flexible packages.

    Flexible package inspection using VeriPac Flex Series

    Designed specifically for pouches and other flexible packaging with dry-filled products, VeriPac FLEX series are innovative non-destructive container closure integrity testing (CCIT) systems. Applicable across a wide range of flexible packaging formats, this technology provides unparalleled sensitivity, reliability and practicality in testing without requiring change-over of settings or tooling.

    Utilizing the ASTM method for Vacuum decay leak testing (F2338), VeriPac inspection systems provide quantitative data and definitive PASS or FAIL results. PTI offers VeriPac FLEX Systems in several configurations to accommodate various package specifications and test sensitivity requirements. Such configurators for both the leak test instrument and the test chamber capacity enable evaluation of small format sachets and stick packs, up to large bulk size pouches and bags.

    Because it eliminates subjectivity, reduces the waste and cost associated with traditional test methods, they are perfect alternatives to destructive package inspection techniques. Infact Vacuum decay leak testing technology has proven to provide a short return on investment when compared to destructive methods, such as the water bath or blue dye leak test. Listed in ISO 11607 and recognized by the FDA as a consensus standard for package integrity testing, VeriPac test systems detect critical packaging failures reliably and reveal valuable information on the packaging process.

    Understanding the working of VeriPac FLEX systems

    Depending on the size of the package, the test operator first connects VeriPac tester to the appropriate FLEX chamber. There are two VeriPac systems namely, integrated flexible test chamber (IFC) and drawer Style test chamber (D-Series) that can be paired with the FLEX chamber to provide different leak detection capability depending on the application. While the integrated flexible test chamber is for sachets or stick packs with low headspace, drawer style test chamber features two standard sizes, the Small (D) or Large (DXL) depending upon the package size and specifications. Customs designs can be manufactured for large package formats and bulk products. The unique difference with VeriPac FLEX systems is how the package is tested. PTI utilizes its flexible membrane that conforms to the package shape and size, eliminating any stress and damage to the film materials.

    Benefits of VeriPac FLEX systems

    • Deterministic, quantitative test method
    • Non-destructive, non-subjective, no sample preparation
    • Test multiple packages in a single test cycle
    • Cost effective with rapid return on investment
    • Supports sustainable packaging and zero waste initiatives
    • Simplifies the inspection and validation process
    • ASTM test method and FDA standard
    • Accurate and repeatable results
    • USP < 1207> compliant
    Readmore...
    veripac flex series, flexible packaging, ccit, container closure integrity testing, vacuum decay technology
    215
    18
    Nov 2021

    VeriPac 465 Technology for Highly Sensitive Micro Leak Testing

    VeriPac 465 Technology for Highly Sensitive Micro Leak Test

    Container closure integrity testing (CCIT) or leak testing is an important process in the manufacturing phase of a pharmaceutical drug product in particular parenteral products. CCIT is performed to evaluate and maintain sterility over the shelf life of a product as well as to prevent contamination of the product from moisture, reactive gases, or micro-organisms. In earlier times, dye ingress, microbiological ingress and other probabilistic test methods were being used in the industry. However, the results produced by such methods lacked accuracy, reliability and were highly subjective. Therefore, manufacturers are now replacing probabilistic test methods with deterministic methods, which reduce the needs for sample preparation and validation and provide more accurate detection of leaks and defects.

    Why is VeriPac 465 effective in highly sensitive micro leak testing?

    PTI's VeriPac 465 is a deterministic, quantitative inspection technology that is non-destructive and non-invasive to the package being tested. This technology requires no sample preparation and performs leak detection based on the basic principles of physics. The VeriPac 465 is an ASTM approved, FDA recognized package integrity testing method which is based on vacuum decay leak test method (F2338). This test method was developed using VeriPac leak test instruments. Unique test cycles, pneumatic controls and processing algorithms are certain features of VeriPac 465 system that make it the foremost vacuum-based leak test for parenteral products.

    This inspection method is suitable for laboratory offline testing and QA/QC statistical process control. The test cycle takes only a few seconds, results are non-subjective and testing is non-destructive to both product and package.

     

    Technology overview

    The test begins by connecting VeriPac 465 leak tester to a chamber that is specially designed to contain the package to be tested. Vacuum is then applied to the test chamber in which the package is placed. Using dual transducer technology, the test chamber is monitored for both- level of vacuum and the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. The sensitivity of a test is a function of the sensitivity of the transducer, the package design, the package test fixture and critical test parameters of time and pressure. VeriPac 465 technology reduces the baseline measurement for good samples and amplifies the test result for defective samples. This technology is geared towards detecting leaks in the MALL range for parenteral packaging and can also be applied to flexible and semi flexible package formats

    Inspection Criteria

    • Measures seal integrity of entire container or package
    • Measures and verifies container closure system integrity
    • Tests for gas leaks for dry products (lyophilized vials, powder filled)
    • Tests for liquid leaks (liquid filled vials, pre-filled syringes)

    Benefits of VeriPac 465

    • Non-destructive, non-subjective, no sample preparation
    • Defect detection down to 0.002 cc/min
    • Highest level of sensitivity, repeatability and accuracy
    • Results proven superior to dye ingress
    • Deterministic, quantitative test method
    • Supports sustainable packaging and zero waste initiatives
    • ASTM test method and FDA standard
    Readmore...
    container closure integrity testing, ccit, leak test, vacuum decay technology, veripac 465, package integrity testing
    330
    16
    Nov 2021

    Vacuum Decay Technology for Pharmaceutical Package Inspection

    Vacuum Decay Technology for Pharmaceutical Package Inspection

    As pharmaceutical products leave the laboratory for distribution, they may be exposed to certain conditions that put their integrity at risk. Product quality deterioration and economic losses may be caused due to extreme temperatures or shocks during transportation. Pharmaceutical package inspection is vital to identify and control materials that may alter the protective capacities of packaging. Container Closure Integrity Testing of pharmaceuticals is performed with the purpose of guaranteeing the safety of the products during its distribution and storage lifecycle until delivery to the patient. CCIT helps in determining the integrity and stability of packaging or container until the point of delivery.

    CCI testing using Vacuum decay technology

    To guarantee integrity and consistency of packages, the ability to precisely detect leaks and defects is necessary. Although destructive Container Closure Integrity Testing (CCIT) methods like water bath, dye tests, peel and burst tests can detect leaks, they are time-consuming, unreliable and produce subjective test results. Additionally, they generate significant product loss and wastage. Over the years industry has seen an increasing demand for non-destructive package integrity testing methods. One such method is Vacuum Decay technology.

    Vacuum Decay is a test method that has been proven over decades as the most practical and sensitive vacuum-based leak test method. It is a simple test method that challenges container integrity based on fundamental physical properties. Vacuum Decay technology creates reliable and accurate quantitative results with a pass or fail determination and has been established as a non-destructive deterministic alternative method to the blue dye test. The standard vacuum decay leak test method (ASTM F2338), developed using PTI's VeriPac instruments, is recognized by the FDA as a consensus standard for container closure integrity (CCI) testing. The test method is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207)

    How does Vacuum Decay Technology work?

    Under this method, the leak testers are first connected to a test chamber that is specifically designed to hold the package to be tested. Vacuum is applied to the package placed inside the test chamber. Using single or dual vacuum transducer technology test chamber and level of vacuum are monitored along with a change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package. This inspection method is suitable for laboratory offline testing and can be designed for manual or fully automated operation. The test cycle is non-destructive to both product and package and takes only a few seconds. It provides significant savings by not wasting products for a leak test and generates a return on investment in under six months for many products.

    Key Benefits of Vacuum Decay technology

    • Non-destructive and non-invasive
    • No sample preparation
    • ASTM approved test method
    • FDA Recognized Consensus Standard
    • Allows for increased sampling
    • Quantitative results
    • Repeatable
    • Rapid test time
    • Eliminates cost and waste of destructive testing
    • Test results can be easily validated
    • SPC laboratory testing or online applications
    Readmore...
    package integrity testing, ccit, container closure integrity testing, pharmaceutical package testing, vacuum decay leak test
    278
    28
    Sep 2021

    Medical Device Package Inspection using Seal-Scan Technology

    Medical Device Package Inspection using Seal-Scan Technology

    Medical device packaging plays a fundamental role in safeguarding the product and retaining its quality throughout its shelf life. A package containing medical devices should not only reach the hospital defect free, but it also must withstand sitting on a shelf, possibly for years, without breaking down. Therefore, medical device packaging should be in line with international regulations and quality standards. In order to ensure quality of medical device packages, manufacturers reply on package integrity and seal quality test methods. Although the market offers a complete range of inspection techniques, it is important for manufacturers to choose the appropriate one based on packaging material used and sensitivity levels required.

    The ideal solution is a non-destructive method for inspecting the physical properties of the seal and a non-subjective analysis to determine the seal quality. PTI’s Airborne Ultrasound technology (ASTM Test Method F3004-13) uses a transmission of high frequency sound waves through the pouch seal area, providing a simple pass or fail result of seal quality. A linear scan analysis of the seal area will detect channel defects, misaligned seals, incomplete and missing seals immediately after the package has been sealed. If the system detects a package defect, the product can immediately be removed from the packaging and reworked. Process related defects can be addressed and corrected immediately, which significantly reduces the quantity of defective packages produced.

    Package inspection using Seal-Scan technology

    PTI's Seal-Scan® is a non-destructive Airborne Ultrasonic technology (ABUS) that inspects and analyzes pouch seals offline. Seal-Scan® is a semi-automatic inspection system with x-y drive, used for the detection of seal defects, seal characterization and material analysis. This technology utilizes the ASTM Test Method F3004 for seal quality and integrity evaluation. .Seal-Scan® is a deterministic, quantitative, high-resolution method that inspects pouch seals for defects and seal integrity for consistency. Testing using a Seal-Scan® is non-destructive, non-invasive, and requires no sample preparation. Seal-Scan® provides advanced digital imaging software tools for process control which offers in-depth seal quality analysis. PTI has designed several configurations of SEAL-SCAN® for both offline inspections to accommodate various package specifications, test sensitivity and package handling requirements.

    Technology overview

    Under this method, the pouch seal or package material is scanned between two focused ultrasonic sensors. Ultrasonic waves pass through single or multiple layers of bonded materials. Ultrasonic propagation through different mediums causes reflection of sound waves and reduces/eliminates signal strength. Seal Scan technology can detect different types of defects including leaking and non-leaking, process-related and random are detectable. This technology can produce Opto-Acoustic images as well as detailed statistical analysis by either of two scan modes (L-Scan and C-Scan). An L-Scan is a single linear scan along the X-axis of the seal that provides a line graph of seal integrity and simulates online inspection. C-Scan produces multiple scans (along X and Y-axis of seal area) that provide a high-resolution ultrasonic image of the seal structure. This technology can be integrated into a pouch production line via the Seal-Sensor for 100% on-line seal defect detection.

    Benefits of Seal Scan Technology

    • Deterministic inspection method producing quantitative results
    • Works for any material and combinations, regardless of color transparency, print, surface finish and porosity
    • Produces high resolution Opto-Acoustic image of seal
    • Characterizes overall quality and uniformity of the seal
    Readmore...
    package integrity testing, ccit, container closure integrity testing, airborne ultrasound technology
    314
    23
    Sep 2021

    OptiPac Leak Detection System for Multi-cavity Blister Packaging

    OptiPac Leak Detection System for Multi-cavity Blister Packaging

    Blister packs are common packaging formats for solid dose drugs in the form of tablets and capsules. Such packages not only preserve the quality of the drug, but also ensure ease of use to the consumer. Blister packages are commonly used by drug manufactures to ensure protection of the product from oxidation, moisture or other atmospheric pollutants which may lead to product degradation.

    However, in recent years, the industry has seen a tremendous increase in the number of high-risk medicines, which are more sensitive to environmental condition than other tablets or capsules. This has further increased blister package integrity challenges. Although the number of environmental contaminants that can enter a package depends on leak size, with blister package, even minute leaks can become troublesome. Therefore, Container closure Integrity Testing (CCIT) of blister packs is extremely crucial.

    OptiPac inspection system for non-destructive blister package testing

    The OptiPac Leak Detection System is a deterministic non-destructive package integrity testing method created specifically for blister packs. Designed and engineered with One-Touch Technology, OptiPac achieves a rapid test cycle without requiring any changeover or sample preparation. This unique technology can provide rapid detection of sub-5-micron defects depending on blister cavity volume. Although OptiPac system uses similar principles applied in a vacuum-based blue dye test, it applies controlled inputs and measured outputs without the hassle and reliability issues of the dye ingress method. OptiPac uses volumetric imaging technology to measure the motion of a blister package under vacuum to detect leaks. The interface is practical and simple to setup with new blister package formats, requiring no complex parameter adjustments experienced with other non-destructive blister package inspection systems.

    Technology overview

    OptiPac utilizes volumetric imaging under vacuum with topographic imaging to detect the presence and location of leaks. The test begins by placing the sample on the testing area for vacuum-based measurement. After pressing the start button, vacuum is pulled to a defined vacuum. The blisters expand under vacuum, and air is drawn out of the blister through any leaks present. In the presence of a leak, the air escapes into the chamber causing a collapsed blister cavity. A volumetric image and measurement reading is taken during the dynamic vacuum test sequence, that determines which blister cavities are defective. A definitive pass/fail result as well as the quantitative measurement associated with each package test is also displayed. PTI's OptiPac systems provide a definitive result based on accurate and measurable quantitative data, reliably detecting leaks down to 5 microns.

    OptiPac’s insightful technology offers a suite of advanced functions:

    • Auto configuration for easy recipe setup and validation of new blister formats
    • Auto orientation of blister packs (test blister packs in any position –no specific orientation)
    • Auto calibration is an integrated one-touch function
    • Advanced batch reporting with audit trail including image of blister pack and defect results

    OptiPac Benefits

    • Non-destructive technology - Pass/Fail results backed by quantitative test data
    • Completely tool-less
    • No changeover to test different blister formats
    • Identifies defective cavity
    • Pre-loaded recipe library with easy recipe setup and validation of new blister formats
    Readmore...
    ccit, container closure integrity testing, blister packaging, optipac leak detection, optipac
    263
    08
    Sep 2021

    A Quick Rundown on Medical Device Package Inspection Techniques Offered by PTI

    A Quick Rundown on Medical Device Package Inspection Techniques Offered by PTI

    Package validations for medical devices play a significant role in ensuring safe and effective use of products when they reach the patient. Packaging for these safety-critical products must withstand the rigors of the manufacturing process, storage, and the distribution cycle. Package integrity is crucial to maintaining sterility for medical devices, especially those that are to be used during medical procedures or implanted into patients. This is because even a minute defect in the package can affect sterility of the device and cause health risk to the patient. Given below is a list of non-destructive package inspection techniques that help maintain highest quality standards.

    CCI techniques offered by PTI

    Vacuum Decay technology

    Vacuum Decay is a non-destructive package inspection technique that offers the ability to inspect both the entire body of the package and seals for micro leaks and defects. The technology proven to provide reliable, reproducible, repeatable, and accurate quantitative results, is recognized by the FDA as a consensus standard for container closure integrity testing (CCIT). Vacuum Decay leak test method is an ASTM Test method (ASTM F2338) that was developed using PTI instruments, it is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207).

    Technology overview

    Vacuum Decay test method is simple in practice and challenges container integrity based on fundamental physical properties. The samples are placed in a closely fitting test chamber, equipped with external vacuum source. A pre-determined vacuum level is selected depending on test sample and level of sensitivity required. The next step involves evacuating the test chamber and test system dead space for a pre-determined period. Differential pressure transducers are used to monitor change in vacuum level for a specified period. A pressure increase beyond predetermined pass/fail limit indicates container leakage.

    Advantages of Vacuum Decay technology:

    • Non-destructive package inspection system
    • Accurate and reliable results
    • Definite pass/fail result based on quantitative test data 
    • Accommodates multiple packaging formats
    • Eliminates destructive, subjective testing methods 
    • Effective in detecting even minute leaks 

    Airborne Ultrasound technology

    Airborne Ultrasound technology is a non-destructive Container Closure Integrity test used to examine seal quality for defects. It is an ASTM Test Method F3004 and FDA recognized standard for seal quality integrity testing. These tests are primarily conducted to provide advanced seal quality inspection of pouches, flexible packages and tray seals. Airborne Ultrasound technology is a non-destructive and non-invasive seal quality inspection technique suitable for many materials including Tyvek, paper, foil, film, aluminum and plastic. Airborne Ultrasound technology offers a comprehensive approach to evaluate seal quality even in conditions where a seal has a defect but may not leak.

    Technology overview

    Under this method, ultrasonic waves are propagated through the package seals as they move along the sensor head. This causes reflections of sound waves. The signal strength is either eliminated or reduced in the presence of any defect/leak. Such variations in signal strength are closely monitored to identify the defects.

    Benefits of Airborne Ultrasound technology

    • Non-destructive, non-subjective, no sample preparation
    • Accurate and reliable results
    • Deterministic package inspection technique 
    • Works on multiple packaging formats and materials 
    • Economical cost-effective solution for seal integrity testing
    • Can be applied to 100% inline seal quality testing
    Readmore...
    medical device package testing, cci, ccit, airborne ultrasound technology, vacuum decay technology, pharma package inspection
    341
    26
    Aug 2021

    How to Evaluate Sterility of Pharmaceutical Packages?

    How to Evaluate Sterility of Pharmaceutical Packages

    Sterility testing of pharmaceutical products is crucial to ensure that drugs and other biopharmaceutical therapeutics are actually sterile and safe for human use. No pharmaceutical drug can be released into the market without appropriate sterility testing. Pharmaceutical drug products often contain complex active ingredients that stress the importance of sterility and CCI testing. Even a minute breach in the package can cause moisture, air, or other harmful substances to enter the product- thus compromising its healing properties. Moreover, a contaminated drug product can cause serious health issues to the user, making it more of a threat than treatment. Hence, ensuring container closure integrity holds high relevance.

    Ensuring Package Sterility with Vacuum Decay Technology

    Vacuum Decay is a non-destructive CCI test method that has been proven over decades and improved with new technology innovations. The test method is simple in principle and challenges container integrity based on fundamental physical properties. Vacuum Decay technology operates by placing sample packages in a closely fitting evacuation test chamber, which is equipped with an external vacuum source. Single or dual vacuum transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in absolute and differential vacuum indicate the presence of leaks and defects within the package.

    Being a non-destructive test method, it provides significant savings by not wasting product for a leak test and generates return on investment in under six months for many products. Vacuum Decay technology has established itself as a non-destructive alternative to the blue dye leak test. The standard vacuum decay leak test method (ASTM F2338), developed using PTI's VeriPac instruments, is recognized by the FDA as a consensus standard for container closure integrity (CCI) testing. The test method is listed in ISO 11607 and referenced in the United States Pharmacopeia Chapter on CCI (USP Chapter 1207).

    Overview of PTI’s VeriPac Vacuum Decay Technology

    PTI's improvements in the form of VeriPac test systems have raised a bar for excellence and performance reliability in terms of non-destructive package testing equipment. Its ability to detect leaks down to the sub- micron level and identify process issues before they become critical has made it an ideal choice for pharmaceutical package integrity. The next generation of VeriPac systems combines both technological innovation and practical adjustments to current technology to make it the most sensitive and versatile vacuum-based leak detection technology to date. Through the introduction of unique test cycles, pneumatic controls and processing algorithms, the VeriPac technology is establishing itself as the foremost vacuum-based leak detection technology.

    Benefits of Vacuum Deacy Technology

    • Non-destructive technology
    • ASTM Test Method F2338, FDA Consensus Standard and referenced in USP 1207 Guidelines
    • Accurate, repeatable results
    • Pass/fail results backed by quantitative test data
    • Completely tool-less with no changeover to test different packaging formats
    • Identifies which cavity is defective
    • Eliminates destructive, subjective testing methods
    Readmore...
    pharma package testing, pharmaceutical package testing, container closure integrity of pharmaceuticals, CCIT, veripac test system, package integrity testings
    297
    13
    Aug 2021

    VeriPac LPX for Automated Inspection of Parenteral Products

    VeriPac LPX for Automated Inspection of Parenteral Products

    Parenteral product package systems are expected to provide barriers against drug contamination and ensure stability and sterility throughout the entire shelf life. Any defect in packaging can cause microbial contamination, exposure to gases and water vapor, resulting in product deterioration. Furthermore, the industry has seen a spike in demand for combination products and patient-centered drug delivery systems, that present a high level of technical risk for maintaining container closure integrity (CCI). Therefore, container closure integrity testing is an important stage in the sterile drug product lifecycle.

    Automated package inspection with VeriPac LPX

    As the pharmaceutical industry continues to grow, manufacturers require capable, consistent automated solutions for container closure integrity testing. Automated inspection systems improve package reliability, reduce chances of product recalls and packaging failure.

    PTI's VeriPac LPX series are a line of fully automated package quality inspection systems for 100% inline testing. The LPX enables enhanced automated testing that provides a high level of confidence in packaging line performance. Veripac LPX is a practical and reliable solution for the problems associated with performing infrequent testing as well as for recognizing and correcting process-related quality issues.

    Sensitivity and reliability go hand in hand with CCI testing. The VeriPac LPX 430.8S is the next generation automated inspection system for container closure integrity testing of parenteral products. Automated for 100% testing or batch release, the VeriPac PLX 430.8S is an eight-station dual chamber design, with robotic testing platform for pre-filled syringes and vials, products filled with lyophilized product, small molecule liquids and Water for Injection (WFI).

    The VeriPac LPX features a dynamic robotic design, tailored to fit varied production requirements. LPX Series are scalable, modular solutions to meet production line demands. This adaptable platform provides reliable automated handling of a variety of packaging formats. Applications for LPX automation range from flexible packaging to rigid containers, and parenteral products. Additionally, VeriPac LPX allows easy changeover for testing different size packages on the same system.

    Benefits of VeriPac LPX test systems

    • Automated testing enables the highest level of container quality assurance
    • Self-teach software
    • Non-drift transducers for consistent leak detection
    • Low false rejects
    • Operator friendly
    • Reject statistics & test result trends
    • 24/7 operation
    • Increased productivity
    • Reduced downtime
    • Low maintenance
    Readmore...
    veripac LPX, parenteral product leak testing, container closure integrity, ccit, automated inspection systems
    348
    15
    Apr 2021

    Evaluating Container Closure Integrity of High-Risk Pharmaceuticals

    Evaluating Container Closure Integrity of High-Risk Pharmaceuticals

    The pharmaceutical industry is crucial to the health care system as they assure treatments that were unimaginable a few years ago. As the industry grows in importance, the techniques of primary packaging for pharmaceutical products, especially high-risk medicines have taken on new prominence.

    Since many high-risk pharmaceutical products are filled and sealed in combination devices, it’s critical for manufacturers to ensure that the components function well together. Hence, design and distribution considerations are critical to both the drug and the container. Manufacturing inconsistencies and tolerance differences in packages containing multiple components are primary contributors to distribution issues. Often, such inconsistencies result in container closure failure, causing serious implications down the supply chain. For instance, glass vials and pre-filled syringes may not seal properly at critical fill-finish closure points. Such a failure can cause oxygen or other environmental contaminants to enter the product and compromise the efficacy of the drug in the barrel. At this point, it is critical to use the most precise leak testing method possible.

    Why Container Closure Integrity testing is important?

    As per the FDA- Food and Drug Administration, A container and closure system refers to "the entirety of packaging components that together contain and protect the product". In simple words, Container Closure Integrity testing can be understood as a leak detection test. CCI solutions include non-destructive package inspection technologies to ensure product sterility throughout the product’s lifecycle. CCIT plays a vital role in ensuring that the products are free from any possible contamination. Conventionally, probabilistic test methods like bubble tests, dye ingress and microbial challenge were extensively used in pharmaceutical package testing. Since it was found that such test results lacked accuracy and reliability, the United States Pharmacopeia (USP) released guidance in 2016 stating that deterministic methods are preferred over probabilistic test methods. With this new USP <1207> chapter guidance, manufacturers today rely on non-destructive alternatives like Vacuum Decay technology and Micro Current HVLD technology that ensure highly sensitive package integrity solutions.

    1. Vacuum Decay technology: Vacuum Decay technology is a non-destructive container closure integrity solution capable of detecting leaks in nonporous, rigid or flexible packages. Vacuum Decay leak testing is conducted by placing a sample package in a well-fitting evacuation chamber, which is provided with an external vacuum source. The vacuum levels as well as the change in vacuum over a fixed test time are closely observed using single or dual vacuum transducer technology. Changes in vacuum level beyond a predetermined pass/fail limit indicate defects within the package. VeriPac Vacuum Decay series can non-destructively test packaging down to sub-micron leak rates - making it an excellent alternative to destructive testing methods.

    PTI’s VeriPac 465, the latest addition to the vacuum decay series is a robust and reliable solution for testing pharmaceutical containers and parenteral products, achieving highly sensitive sub-micron leak detection. The VeriPac 465 is the most sensitive vacuum based technology on the market to-date.

    Benefits of Vacuum Decay Technology:

    • Non-destructive, non-subjective, no sample preparation
    • Deterministic test method that provides quantitative results
    • Multiple package testing in a single test cycle
    • Economical with rapid return on investment
    • ASTM Test Method, FDA standard and USP 1207 Guidance

    2. Microcurrent HVLD technology: Microcurrent HVLD is a unique High Voltage Leak Detection technology, highly effective across all liquid filled parenteral products. Its applications include liquid-based products ranging from extremely low conductivity sterile water for injection (WFI) to large molecule-based proteinaceous products with suspensions. Its ability to detect small pinholes, micro cracks and seal defects makes it an ideal choice for testing high risk pharmaceutical and parenteral products.

    Benefits of PTI’s MicroCurrent HVLD technology:

    • Non-destructive, non-invasive, no sample preparation
    • Highly effective across all parenteral products, including extremely low conductivity liquids (WFI)
    • Ensure higher levels of accuracy and reliability in test results
    • Simplifies the inspection and validation process
    • Offline and 100% online inspection
    • Referenced in USP 1207 Guidelines
    Readmore...
    CCIT, container closure integrity testing, container closure integrity, vacuum decay technology, high risk pharmaceuticals, hvld
    987
    24
    Mar 2021

    Evaluating Quality Assurance Solutions for Coffee Packaging

    Evaluating Quality Assurance Solutions for Coffee Packaging

    Fresh coffee is the best coffee. The quality of coffee is directly linked to freshness, and maintaining freshness requires adequate packaging. In simple words, packaging is what holds coffee products and maintains its quality. However, maintaining freshness and shelf life of packaged coffee is often a challenge for manufacturers. The flavors and oils in coffee are oxygen sensitive, while flavor profile being the key differentiator for consumers. External conditions like high temperature, light, or high humidity can increase the rate of staling. Under such conditions, whole beans will lose significant amounts of flavor and develop stale fragrance in 1-2 weeks, while in case of ground coffee the process takes 1-2 days. Compromised package integrity can result in oxidation, flavor degradation, and spoilage. Leaks as small as 10 microns can draw oxygen into the package over its shelf life. If a consumer encounters a product that exhibits oxidation, the bitterness and stale flavor will likely affect the consumer’s decision to repurchase. This explains why manufacturers give prime importance to evaluating integrity of coffee packaging.

    Conventionally, water bath was the most popular technique for leak testing coffee products. Although water bath is a simple and effective leak testing method for rigid containers, it fails to meet critical needs associated with flexible coffee packages. Additionally, the cost associated with maintaining standard destructive methods is high. Subjective test results, variable test standards, and higher risks associated with the use of other methods emphasize the need for better alternatives. Hence manufacturers today opt for non-destructive testing methods that eliminate the cost associated with wasted product, and ultimately facilitate better quality control.

    Package integrity testing using Vacuum Decay technology

    PTI’s Vacuum Decay technology is an ASTM-approved, FDA recognized non-destructive Container Closure Integrity test method with proven capabilities to provide reliable, reproducible, repeatable and accurate quantitative results. It can detect oxygen critical leaks, providing a more reliable and sensitive solution for a range of packaging formats that is designed to protect oxygen sensitive products. This method involves drawing vacuum on the sample package kept in the test chamber, and analyzing the vacuum level for any defect-indicating a leak. VeriPac systems reliably detect leaks as small as 10 microns, identifying process issues before they become critical, avoiding costly quality deviations.

    For coffee sachets, stick packs or pouches, PTI’s VeriPac FLEX series offer the highest level test sensitivity, detecting micro leaks into the single digit micron range. These are versatile non-destructive package inspection systems designed specifically for flexible packages. To accommodate various package specifications, the VeriPac FLEX is available in several configurations. Each model achieves a specific range of test sensitivity and various test chamber sizes are available depending upon the package size and characteristics. Hence, VeriPac vacuum decay is a practical alternative and significant improvement to the destructive test methods commonly used for flexible packaging.

    Benefits of Vacuum Decay technology:

    • Reliable and sensitive leak detection of quality critical defects
    • Cost savings
    • Using a non-destructive leak test method allows an increase in the number of product samples tested
    • Rapid test cycle and minimal training required to operate tester
    • Rapid ROI due to substantial cost savings and elimination of product loss
    Readmore...
    package integrity testing, coffee packaging, ccit, quality assurance solutions, vacuum decay technology, veripac flex series
    645
    20
    Jan 2021

    Why is Airborne Ultrasound Technology Gaining Popularity in Medical Device Package Testing?

    Why is Airborne Ultrasound Technology Gaining Popularity in Medical Device Package Testing

    The World Health Organization (WHO) has stated that healthcare associated infections pose the highest risk in the delivery of healthcare services globally. This causes a serious threat to millions of patients worldwide every year. Therefore, ensuring sterility of medical devices is an important way to reduce the risk associated with faulty medical devices in hospitals and other healthcare settings.

    Appropriate packaging and packaging materials are crucial to help preserve sterility of medical devices. Conventionally, medical device manufacturers relied on manual visual inspection as a method for assuring quality. However, such methods lacked accuracy and reliability in test results. To overcome the limitations of traditional test methods, manufacturers moved towards deterministic Container Closure Integrity testing methods that ensured quantitative and accurate test results.

    PTI’s Airborne Ultrasound technology is a seal quality inspection test method, capable of non-destructively examining seal quality for defects. It is an ASTM Test Method F3004 and FDA Recognized Standard for seal quality testing. Such tests are mainly conducted to provide enhanced seal quality inspection of pouches, flexible packages and tray seals. Airborne Ultrasound technology ensures in-depth seal quality analyses and is applicable for multiple packaging materials Tyvek, paper, foil, film, aluminium, plastic and poly. According to Oliver Stauffer, CEO of PTI-Packaging Technologies & Inspection, “Ultrasound is one of the only technologies that are telling us what the quality of that physical bonded nature of the seal materials are.”

    Under this technology, ultrasound waves are passed through the package seal which causes reflections of sound waves. The signal strength is reduced or eliminated in the presence of a leak/ defect. Such variations are closely observed to identify the leak. Inability to detect non-leak defects is a common challenge faced by most leak test methods. However, with Airborne Ultrasound technology, users are able to identify various types of seal defects; visible and invisible, leaking and non-leaking, process-related and random.

    PTI has redefined seal integrity testing with its latest improvements in the form of Seal Scan (Offline) and Seal-Sensor. Both these technologies utilize non-contact airborne ultrasonic testing technology. With the advancements in form of Seal Scan and Seal-Sensor, Airborne Ultrasound technology has been proven to be the most effective method for non-destructive seal integrity testing, in both offline laboratory testing for seal quality analysis and 100% inline testing on the production line.

    Benefits of Airborne Ultrasound technology:

    • Deterministic seal quality inspection technique that assures quantitative and reliable results.
    • Applicable for multiple material types and combinations regardless of color, transparency, print, surface finish or porosity.
    • Eliminates subjective manual inspection methods.
    • Non-destructive, non-subjective, no sample preparation
    • Technology can be integrated for 100% online defect detection of the final pouch seal.
    Readmore...
    Airborne ultrasound technology, seal quality inspection, seal quality testing, Seal Scan, Container Closure Integrity testing, CCIT
    522
    11
    Dec 2020

    What are the Different Seal Quality Inspection Techniques Offered by PTI?

    What are the different seal quality inspection techniques offered by PTI

    Seal integrity plays a vital role in ensuring the quality of packaging products. Even a minute defect in the seal can initiate a leak, which can compromise the quality of the product and directly affect its shelf life. It can also result in huge financial losses to the manufacturer. That being said, manufacturers give considerable importance to conducting appropriate seal integrity tests to ensure package integrity at every stage of its lifecycle.

    Seal integrity testing methods can be classified into two- Destructive testing methods and Non-Destructive testing methods. Since under Destructive methods, the packages may get destroyed, its popularity has steadily declined over the past few decades due to this waste and high cost. “There is a huge shift in the industry towards deterministic and quantitative test methods,” says Oliver Stauffer, Chief Executive Officer at PTI - Packaging Technologies & Inspection. “This includes vacuum decay and airborne ultrasound for medical device applications. The industry is currently moving away from dye ingress and manual visual inspection because there are so many blind spots in applying them and there’s a huge false sense of assurance.”

    Seal quality inspection techniques offered by PTI:

    Vacuum Decay technology is a non-destructive Container Closure Integrity test method, used for seal quality inspection in nonporous, rigid or flexible packages. With the ability to detect leaks down to the sub-micron level, , Vacuum Decay technology is identified as one of the most practical vacuum-based leak detection methods. Its ability to provide quantitative, reliable and repetitive test results make it ideal solution for seal quality inspection in Pharmaceutical, Medical Device and Food and Nutrition industries.

    Under this method, the sample packages are first placed in a close fitting evacuation test chamber that contains an external vacuum source. The vacuum levels and changes in vacuum over a pre-determined time are closely monitored. The single or dual vacuum transducer technology is used to monitor the test chamber for both the level of vacuum as well as the change in vacuum over a predetermined test time. The changes in the absolute and differential vacuum indicate the presence of leaks and defects within the package.Over the past few years, Vacuum Decay technology has seen great advancements in the form of PTI’s PERMA-VAC technology and VeriPac FLEX Series.

    The next generation PERMA-VAC technology is a single or dual vacuum transducer technology that has made the VeriPac line of test systems the most sensitive vacuum-based leak tests available in the market. It has higher test sensitivity for providing accurate and reliable results and can be applied to rigid and semi-flexible packages alike. PTI’s PERMA-VAC technology ensures the most stable test measurement ever achieved through vacuum decay.

    VeriPac FLEX series is an ideal package inspection solution for dry filled pouches and flexible packaging. To accommodate different package formats and test sensitivity requirements, VeriPac FLEX series is available in several configurations with multiple test chamber sizes.

     

    2.Airborne Ultrasound technology:

    Airborne Ultrasound technology is yet another seal quality inspection technique, which is capable of non-destructively conducting advanced seal quality inspection of pouches and flexible packaging. It is capable of accommodating multiple packaging materials like Tyvek, paper, foil, film, aluminum, plastic and poly and is also proven to provide deterministic, reliable and accurate test results.

    As the name suggests, this method utilizes ultrasound waves to detect defects in package seals. Ultrasound waves are passed through the material as the package seal moves along the sensor head. This causes reflections of sound waves. Such signal strength variations are closely monitored to identify defects if any. Its ability to evaluate seal quality even under conditions where the defect may not result in a leak, makes Airborne Ultrasound technology a practical choice for seal quality inspection across different industries.

    PTI’s Seal-Scan (Offline) and Seal-Sensor (Online) are the latest advancements to the ultrasound test series. Both these technologies make use of non-contact airborne ultrasonic testing technology and have been established as one of the most effective methods for inspection of flexible package seals. Airborne ultrasound is also an ASTM Test Method F3004 for seal quality inspection.

     

    Readmore...
    seal quality inspection, airborne ultrasound technology, vacuum decay technology, container closure integrity testing, ccit, container closure integrity
    537
    10
    Dec 2020

    Role of Vacuum Decay Technology in Medical Device Package Inspection

    Role of Vacuum Decay technology in medical device package inspection

    Apart from validating the functionality and design of medical devices, ensuring package integrity is crucial to make sure that the product reaches the end-user intact. Packaging and delivery formats available for medical devices range from porous flexible packaging to non-porous rigid containers. Each packaging format has a unique set of characteristics and requirements, which necessitates a comprehensive approach while selecting an appropriate inspection technique.

    With increasing innovations in packaging formats and materials, packaging challenges have also increased. Among other medical devices, Class III medical devices pose the highest level of risk associated with ensuring package integrity. Such devices sustain or support life and are implanted. Examples of Class III devices include pacemakers, cardiovascular stents, respiratory ventilators and breast implants. Since these devices are directly placed into human bodies, even a minute breach in the packaging can pose significant risk to patient safety. Hence testing container closure integrity (CCI) of medical devices is crucial.

    Vacuum Decay is a non-destructive Container Closure Integrity test method focused on package integrity and detection of leak paths. Compared to manual inspection and other non-deterministic test methods, Vacuum Decay offers quantitative, deterministic and reliable test results to ensure package integrity. Vacuum decay technology is capable of accommodating a wide variety of packaging formats including filled and sealed rigid, semi-rigid and flexible packaging made of non-porous or porous materials. This test operates by placing packages in a well fitted evacuation test chamber, which has an external vacuum source. The vacuum levels are continuously monitored to identify any variations from a pre-determined targeted vacuum level. A defect in the package will cause air to escape from the package into the test chamber. On the other hand, packages without any defect hold in the air, maintaining constant chamber vacuum level. Vacuum Decay technology has been proven over years to be one of the most practical and sensitive vacuum-based leak detection solutions.

    PTI’s VeriPac inspection technique is an ASTM approved (F2338), FDA recognized testing method capable of evaluating wide range of high-risk package applications. It can be efficiently incorporated into the packaging process to ensure quality, reduce waste and allow operators to have a proper understanding of package integrity. Multiple vacuum supply types along with single or dual high-resolution transducers configuration enables the VeriPac series to provide fast and reliable test results that are quantitative and deterministic. It is an ideal solution for medical device manufacturers to ensure that the product meets regulatory standards. Based on packaging materials used and the level of test sensitivity required, manufacturers can select the appropriate VeriPac model.

    PTI has revolutionized Vacuum Decay technology with the development of next generation PERMA-VAC technology, that offers increased test sensitivity and repeatable results. The technology is capable of detecting leaks in the MALL range for parenteral packaging and can accommodate a variety of flexible and semi-flexible package formats. The advancements in PERMA-VAC technology has made the VeriPac series the most reliable and practical vacuum-based leak test method available today.

    Benefits of Vacuum Decay technology:

    • Non-destructive, non-subjective, no sample preparation
    • Capable of detecting defects down to 0.05 ccm
    • Accurate, reliable, repeatable results
    • Supports sustainable packaging and zero waste initiatives
    • FDA recognized standard for package integrity testing
    • ASTM test method F2338
    Readmore...
    vacuum decay technology, medical device package inspection, package inspection technologies, Class III medical devices, CCIT
    624
    09
    Dec 2020

    Role of MicroCurrent HVLD Technology in Parenteral Product Container Closure Integrity (CCI) Testing

    Role of MicroCurrent HVLD Technology in parenteral product container closure integrity (CCI) testing

    Ensuring pharmaceutical package integrity has always been a priority for drug product manufacturers. However, over the past few decades, innovations in health care sector have also accelerated pharmaceutical package integrity challenges. Although testing package quality of all healthcare products is important, in the case of parenteral products it is amplified significantly. Parenteral products are defined as injectible products that can be either liquid or powders. Solutions can contain suspensions, emulsions and be proteinaceous in nature. ”. Since these drugs are directly administered into human bodies, ensuring complete integrity of such packages is crucial. Common packaging formats for parenteral products include Liquid-filled containers such as vials, ampoules, syringes, BFS and auto injectors; Lypholized (powder) products are often packaged in vials. Even a minute breach in the package can cause microbial contamination leading to product deterioration. Hence ensuring container closure integrity is a critical process in the life cycle of parenteral products.

    What is HVLD Methodology?

    High Voltage Leak Detection (HVLD)) is a non-destructive Container Closure Integrity technique used primarily to evaluate closure integrity of parenteral product packaging. HVLD technology makes use of quantitative electrical conductivity measurement principles. This method operates by passing high voltage micro current signals through sample packages. Under the presence of a leak, the electrical resistance of the sample declines, causing an increase in current. Applications of High Voltage Leak Detection Technology include testing of the following package formats:

    • Pre-filled Syringes
    • Ampoules
    • Drug Product Cartridges
    • Liquid Filled Vials
    • Blow-Fill-Seal (BFS) Container

    PTI’S MicroCurrent HVLD technology has revolutionized the conventional HVLD method. MicroCurrent HVLD is a non-destructive, non-invasive CCI technique that can be applied to a wide range of liquid filled products including low conductivity sterile water for injection (WFI) and highly proteinaceous drug products within suspensions. PTI’s E-scan HVLD, a highly sensitive CCI testing process uses electrode probes to scan sealed non-conductive containers. Under the presence of a leak, there will be a change in current flow indicating a defect in the container along with its approximate location. This unique technique uses about 50% less voltage and exposes the product and environment to less than 5% of the voltage. An important feature of E-scan HVLD is its ability to easily shift from the laboratory offline to 100% inline testing applications. With the capability to accommodate multiple packaging formats including glass, plastic or poly laminates, it is an ideal solution for parenteral package testing.

    Benefits of MicroCurrent HVLD:

    • Deterministic, non-destructive, non-invasive
    • High level of repeatability and accuracy
    • Ideal package integrity solution for parenteral products
    • Low voltage exposure to the product and environment
    • Offline and 100% online inspection at high production speeds
    Readmore...
    CCIT, container closure integrity, container closure integrity testing, parenteral product leak testing, MicroCurrent HVLD, CCI testing
    719
    04
    Sep 2020

    CCIT - A risk mitigation tool for parenteral products

    CCIT - A risk mitigation tool for parenteral products

    Today’s healthcare industry assures treatments that were unimaginable a few years ago. As pharmaceutical industry grows in importance, the techniques of primary packaging for healthcare products, especially parenteral products has taken on new prominence. Common parenteral packaging methods include Liquid-filled containers such as vials, ampoules, syringes, blow-fill-seals and auto-injectors and containers filled with lyophilized products. Since these drugs are directly administered into human bodies, high sensitivity integrity tests are required to ensure product quality throughout its shelf life. For reasons of safety, packaging material, integrity and design are regulated by Food And Drug Administration as strictly as the product itself.

    Container Closure Integrity Testing is a leak detection test conducted using a non-destructive packaging inspection system to protect the drug from any possible contamination. It is a crucial step in evaluating safety and integrity of the primary packaging so as to maintain a sterile barrier and to avoid leakage resulting in contamination of the drug. Packaging components like bottles, vials, syringes that are in direct contact with the product are called primary components while aluminum caps, cardboard boxes are secondary components as they are not in direct contact with the product. Proper packaging should be a priority for all drug products, but in case of parenteral products, these concerns amplifies several folds as they are directly injected. Hence initiating a proper container closure system is vital for product and consumer safety.

    Although Container Closure Integrity Testing can be performed in many different ways, it can be broadly classified into Probabilistic methods and Deterministic methods. Probabilistic test methods including Microbial Challenge by Immersion, Tracer Liquid Tests (e.g. Dye Ingress), Bubble Tests etc. are traditional test methods where result accuracy may be uncertain. On the other hand, Deterministic test methods like Electrical Conductivity and Capacitance Test (HVLD), Laser-based Gas Headspace Analysis, Mass Extraction, Pressure Decay provide quantitative results with high accuracy. The United States pharmacopeia released guidance in 2016 stating that deterministic methods are preferred over probabilistic test methods.Packaging Technologies And Inspection (PTI’s) Microcurrent HVLD technology and vacuum decay technology are the latest inventions in package integrity testing of parenteral products.

    1. Microcurrent HVLD Technology: Microcurrent HVLD is a unique High Voltage Leak Detection Technology, highly effective across all parenteral products. Its Applications include liquid-based products ranging from extremely low conductivity sterile water for injection (WFI) to proteinaceous products with suspensions. Its ability to detect small pinholes, micro cracks and seal defect detection down to single-digit microns makes it an ideal choice for testing parenteral products.

    2. VeriPac Vacuum Decay Technology: VeriPac Vacuum Decay Technology, based on the ASTM vacuum decay leak test method (F2338-09) and accredited by the FDA for package integrity testing, is a non-destructive inspection system, capable of defect detection down to 0.002 cc/min. This system is applicable for empty and pre-filled syringes, liquid-filled and lyophilized vials and other flexible and rigid liquid-filled packaging. Depending on the package type and leak test sensitivity needed, appropriate VeriPac model can be selected.

    PTI’s next generation PERMA- VAC technology addresses vacuum decay detection at the very core of physical test measurement by controlling the test system volume and maximizing the SNR between good and defective samples. This makes PERMA-VAC the most reliable vacuum-based leak test available in the market.
    Readmore...
    CCIT, parenteral product leak testing, container closure integrity testing, container closure integrity, package integrity testing, ccit pharmaceutical, hvld
    1491
    01
    Sep 2020

    Container Closure Integrity Testing (CCIT) - An Ideal Solution for the Pharmaceutical Industry

    Container closure integrity testing - An ideal solution for pharmaceutical industry

    The global pharmaceutical industry has seen tremendous growth over the last few decades. The complex nature of the industry coupled with frequent breakthroughs has made it a favorite subject of scrutiny. Since any defect in the packaging of drugs can have serious consequences, assuring the quality of the packaging is of prime interest for every manufacturer. Pharmaceutical products are expected to be free from microbial contamination and safe to use right from production throughout their shelf-life. The drug’s stability can be adversely affected through contamination in the form of oxygen, humidity or microbiological ingress. In order to prevent such risks, integrity tests with high sensitivity are required.

    Previously, only sterility testing was conducted on pharmaceutical packaging. However, when it was realized that sterility testing alone is not sufficient to hold the integrity of the medical products, the US FDA published Guidance for Industry for Submission Documentation for Sterilization Process Validation in Applications for Human and Veterinary Drug Products. This emphasised the importance of verification of microbial barrier properties of a pharmaceutical product package (i.e., CCI). FDA defines Container Closure Integrity Testing (CCIT) “as the sum of packaging components that together contain and protect the dosage form”.

    Container Closure Integrity Testing is a method of leak detection using a non-destructive packaging inspection system to prevent possible contamination. Such a test is essential since any defect in the container can cause external particles to enter the product, thereby reducing its shelf life. Implementing right Container Closure System has been of prime importance for a manufacturer as it affects both the product and the patient. Hence, the relevance of CCI Testing in the pharmaceutical industry has steadily increased over the years. Contaminants that can enter a product include micro-organisms, reactive gases, and other substances. CCIT ensures product quality is maintained from the point of manufacture throughout its distribution and use. Container closure systems include primary packaging components and secondary packaging components. Components such as a glass vial or syringe, which come into direct contact with the product, are primary packaging components. On the other hand, components that are crucial to ensure correct package assembly, such as aluminum caps, over stoppers etc. are the secondary packaging components

    CCI Testing Methods

    Container closure integrity testing can be performed in many different ways. Each method has its own merits and demerits. A number of factors have to be considered while selecting appropriate testing methods. These factors include, but are not limited to; the reliability of the test method, material of the primary package and inline versus an offline testing requirement. CCI testing methods can also be selected depending on specific desired outcomes. Examples of desired outcome include: identifying the presence of leak paths, understanding leak path’s location, evaluating leak rate for the whole package, and measuring potential for microbial ingress. The United States pharmacopeia released guidance in 2016 stating that deterministic methods are preferred over probabilistic test method.

    1. Probabilistic methods: Here, the testing methods are more traditional, and the accuracy of the result is uncertain. The probabilistic methods include the following:
    • Microbial Challenge by Immersion
    • Tracer Liquid Tests (e.g. Dye Ingress)
    • Bubble Tests
    • Tracer Gas (Sniffer Mode)
    2. Deterministic methods: Such methods provide quantitative results with a higher level of accuracy. The chances of errors are also minimal. The deterministic methods include the following:
    • Electrical Conductivity and Capacitance Test (HVLD)
    • Laser-based Gas Headspace Analysis
    • Mass Extraction
    • Pressure Decay
    • Tracer Gas (vacuum mode)
    • Vacuum Decay
    Readmore...
    CCIT, container closure integrity, container closure integrity testing, pharmaceutical product leak testing, pharmaceutical package testing, package integrity testing
    1708

    Popular Blogs

    Tags

    Container Closure Integrity Testing (CCIT) - An Ideal Solution for the Pharmaceutical Industry

    Sep 01, 2020   |   1708

    Container Closure Integrity Testing is a method of leak detection using a non-destructive packaging inspection system to prevent possible contamination in pharmaceutical products.

    CCIT - A risk mitigation tool for parenteral products

    Sep 04, 2020   |   1491

    Container Closure Integrity Testing is a crucial step in evaluating the integrity of the primary parenteral packaging to avoid any leakage resulting in contamination of the drug.

    Automated CCI technologies- Revolutionizing medical device testing

    Sep 10, 2020   |   1071

    PTI revolutionized medical device package leakage testing with Automated CCI technologies across their different technology platforms

    Evaluating Container Closure Integrity of High-Risk Pharmaceuticals

    Apr 15, 2021   |   987

    High risk pharmaceuticals pose unique package integrity challenges for manufacturers. Even a minute leak in the container closure system can make way for contaminants to enter the products. Non-destructive container closure integrity tests like Vacuum Decay technology and Microcurrent HVLD technology offer highly sensitive leak detection with quantitative results.
    COPYRIGHT 2020, PTIUSA, ALL RIGHTS RESERVED PRIVACY AND COOKIES TERMS OF USE
    Popup