Mar 2021

Why is MicroCurrent HVLD Technology a Preferred CCI Technique for Ensuring Integrity of Biologic Products

Why is MicroCurrent HVLD Technology a Preferred CCI Technique for Ensuring Integrity of Biologic Products

Often described as the driving force of pharmaceutical industry, biologic drugs have the ability to address chronic diseases, unmet medical needs and comprise of more than half of the drugs in development. These are generally large complex molecules, derived from human, animal, or microorganisms through biotechnology. Examples include blood components, cells, vaccines, tissues, and recombinant proteins. The ability of biological drugs to treat life threatening diseases coupled with aging population has lead to tremendous growth in the global biological drugs market. However, the rapid growth of biological products has also increased packaging challenges to deliver safe and effective products.

Drug contamination is a serious concern in any medical industry; however, for biologics, it amplifies several folds because they are used to treat serious illnesses and chronic conditions. Contamination has a direct impact on product stability resulting in reduced shelf life and efficacy. Along with maintaining an acceptable shelf-life, there are other challenges too. Another important factor that can affect the quality of a drug is environmental conditions. For example, if a product is exposed to extreme temperature during transit, the product quality may be compromised. A biologic can also lose its stability if it’s unable to withstand variations in light and chemicals that it might encounter. Therefore, in order to cover packaging challenges associated with biological products, ensuring its container closure integrity is crucial.

Ensuring package integrity with PTI’s MicroCurrent HVLD technology

PTI’s MicroCurrent HVLD technology is a non-destructive, non-invasive container closure integrity test method that is found to be highly effective across applications such as pre-filled syringes, vials, cartridges, ampoules, BFS, bottles and pouches. This technique can precisely detect any leak in a wide range of liquid-filled products including extremely low conductivity sterile water for injection (WFI) and proteinaceous products with suspensions. Under this method, the sealed container is scanned using electrode probes to detect the presence of any leak. Defects in the container as well as its approximate location can be identified by analyzing a change in the current flow. MicroCurrent HVLD technology utilizes about 50% less voltage and exposes the product and environment to less than 5% of the voltage when compared to conventional HVLD solutions. It is one of the most effective CCI technologies for all parenteral and biologic products.

Benefits of PTI’s MicroCurrent HVLD technology

  • Non-destructive, non-invasive, no sample preparation
  • Highly effective across all parenteral products, including extremely low conductivity liquids (WFI)
  • Ensure higher levels of accuracy and reliability in results
  • Offline and 100% online inspection at high production speeds
  • Simplifies the inspection and validation process
  • Referenced in USP 1207 Guideline
Microcurrent HVLD, CCI, container closure integrity, container closure integrity testing, Integrity of biologic products
Dec 2020

Role of MicroCurrent HVLD Technology in Parenteral Product Container Closure Integrity (CCI) Testing

Role of MicroCurrent HVLD Technology in parenteral product container closure integrity (CCI) testing

Ensuring pharmaceutical package integrity has always been a priority for drug product manufacturers. However, over the past few decades, innovations in health care sector have also accelerated pharmaceutical package integrity challenges. Although testing package quality of all healthcare products is important, in the case of parenteral products it is amplified significantly. Parenteral products are defined as injectible products that can be either liquid or powders. Solutions can contain suspensions, emulsions and be proteinaceous in nature. ”. Since these drugs are directly administered into human bodies, ensuring complete integrity of such packages is crucial. Common packaging formats for parenteral products include Liquid-filled containers such as vials, ampoules, syringes, BFS and auto injectors; Lypholized (powder) products are often packaged in vials. Even a minute breach in the package can cause microbial contamination leading to product deterioration. Hence ensuring container closure integrity is a critical process in the life cycle of parenteral products.

What is HVLD Methodology?

High Voltage Leak Detection (HVLD)) is a non-destructive Container Closure Integrity technique used primarily to evaluate closure integrity of parenteral product packaging. HVLD technology makes use of quantitative electrical conductivity measurement principles. This method operates by passing high voltage micro current signals through sample packages. Under the presence of a leak, the electrical resistance of the sample declines, causing an increase in current. Applications of High Voltage Leak Detection Technology include testing of the following package formats:

  • Pre-filled Syringes
  • Ampoules
  • Drug Product Cartridges
  • Liquid Filled Vials
  • Blow-Fill-Seal (BFS) Container

PTI’S MicroCurrent HVLD technology has revolutionized the conventional HVLD method. MicroCurrent HVLD is a non-destructive, non-invasive CCI technique that can be applied to a wide range of liquid filled products including low conductivity sterile water for injection (WFI) and highly proteinaceous drug products within suspensions. PTI’s E-scan HVLD, a highly sensitive CCI testing process uses electrode probes to scan sealed non-conductive containers. Under the presence of a leak, there will be a change in current flow indicating a defect in the container along with its approximate location. This unique technique uses about 50% less voltage and exposes the product and environment to less than 5% of the voltage. An important feature of E-scan HVLD is its ability to easily shift from the laboratory offline to 100% inline testing applications. With the capability to accommodate multiple packaging formats including glass, plastic or poly laminates, it is an ideal solution for parenteral package testing.

Benefits of MicroCurrent HVLD:

  • Deterministic, non-destructive, non-invasive
  • High level of repeatability and accuracy
  • Ideal package integrity solution for parenteral products
  • Low voltage exposure to the product and environment
  • Offline and 100% online inspection at high production speeds
CCIT, container closure integrity, container closure integrity testing, parenteral product leak testing, MicroCurrent HVLD, CCI testing

Popular Blogs


CCIT - A risk mitigation tool for parenteral products

Sep 04, 2020   |   656

Container Closure Integrity Testing is a crucial step in evaluating the integrity of the primary parenteral packaging to avoid any leakage resulting in contamination of the drug.

Container Closure Integrity Testing (CCIT) - An Ideal Solution for the Pharmaceutical Industry

Sep 01, 2020   |   628

Container Closure Integrity Testing is a method of leak detection using a non-destructive packaging inspection system to prevent possible contamination in pharmaceutical products.

Ensuring Bottle and Container Integrity through VeriCon Technology

Sep 22, 2020   |   390

PTI’s VeriCon technology ensures pharmaceutical package integrity for retaining product quality and shelf life.

Automated CCI technologies- Revolutionizing medical device testing

Sep 10, 2020   |   384

PTI revolutionized medical device package leakage testing with Automated CCI technologies across their different technology platforms